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Abstract
The weak permanent magnetic dipole moment of cobalt ferrite-doped colloidal
silica spheres was increased by exposure to a saturating magnetic field. The
resulting change of the rotational dynamics of the magnetic microspheres
in a weak alternating field was measured from low to high volume fraction
in ethanol, using a frequency-dependent complex magnetic susceptibility
setup. At low volume fractions, the increased dipolar attraction slows down
Brownian rotation. At higher volume fractions, however, rotation is no longer
slowed down as rapidly with increasing concentration, likely due to dipolar
coupling between the particles which accelerates their partial alignment with
the alternating field. This explanation is supported by the unexpected finding
that salt addition accelerates particle rotation rather than slowing it down. At
the highest volume fraction, colloidal crystals and glasses were formed in which
only a small fraction of the spheres exhibit rotational mobility.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A widely applied experimental approach to determine the particle size in situ in colloidal
dispersions is to measure the characteristic time or frequency of translational or rotational
diffusion of the particles. This is usually done with optical techniques such as dynamic
light scattering (DLS) [1], depolarized dynamic light scattering (DDLS) [2–4], time-resolved
phosphorescence anisotropy (TPA) [5–7], and polarized fluorescence recovery after photo-
bleaching (pFRAP) [8]. These techniques usually require particles which are nearly refractive
index matched with their dispersion medium. Particles with a permanent electric [9] or
magnetic dipole moment are usually highly light absorbing and cannot be optically matched
in common solvents. With techniques like TPA and pFRAP, optical problems in more
concentrated systems are avoided with so-called tracer particles, i.e. particles that are labelled
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with dye and which are dispersed in a more concentrated dispersion of non-labelled particles
(hosts). In practice, synthesizing two different batches of particles that are chemically and
physically identical, except for the dye, is difficult and, for the interpretation, a difference in
size between tracer and host particles must be taken into consideration [10]. Here, we make
use of a magnetic technique to study the concentration dependence of the rotational diffusion
of interacting dipolar colloidal spheres dispersed in a liquid.

The expected trends for the qualitative effects of hydrodynamic and electrostatic
interactions on the rotational diffusion of spheres have been well established in other
publications [2, 3, 11, 12]. In very dilute dispersions, the spheres do not influence each other,
but when the concentration is increased, rotational diffusion is slowed down by hydrodynamic
interaction: the rotation of one particle locally causes flow of the solvent around it, and
this flow hinders the free rotation of neighbouring colloidal particles. The extent to which
hydrodynamic interaction affects rotation depends on the total pair interaction potential of
the spheres. Attraction locally causes spheres to approach each other, hence hydrodynamic
interaction is increased and rotation slows down, whereas repulsion keeps the spheres apart
and hydrodynamic interaction is counteracted. The quantitative relationship between the pair
potential and rotational diffusion coefficient is not straightforward. Our aim is to gain new
insight into that relationship by experimentally studying the effect of increasing attraction
between dispersed colloidal spheres in an original and highly selective way.

Previously, systematic studies of the experimental factors affecting rotational diffusion
always involved changes in the chemical composition of the colloidal dispersion. For example,
the salt concentration was varied to affect the electrostatic repulsion [7]. In the present work,
we study the rotational diffusion of recently developed colloidal silica spheres with embedded
cobalt ferrite nanoparticles [13]. The spheres have a magnetic dipole moment in zero magnetic
field and it can be permanently increased by exposure to a saturating magnetic field [14]. In this
way, the attractive component of the total interaction potential is changed selectively, without
any other change in the chemistry or physics of the system. This makes it possible to ascribe
any resulting change in the rotation rate unambiguously to enhanced dipolar attraction. We
present an experimental investigation of particle rotation in a colloidal system with repulsive as
well as attractive interactions and qualitatively discuss the observed trends.

In section 2, a theoretical background is given to the rotational diffusion of spheres,
interaction potentials and the complex magnetic susceptibility technique. After a description
of experimental methods in section 3, a study of rotational dynamics is presented in section 4,
based on complex magnetic susceptibility spectra. A general discussion of the results follows
in section 5, leading to final conclusions in section 6.

2. Theory

2.1. Rotational diffusion and interaction potentials

For a free single spherical particle in a solvent with viscosity η0, the rotational diffusion
coefficient Dr is given by the Stokes–Einstein–Debye (SED) relation:

Dr
0 = kBT

8πη0 R3
h

, (1)

where kBT is the thermal energy and Rh the hydrodynamic radius of the particle. At infinite
dilution, the rotating colloids only experience the viscous drag by the solvent as quantified
by (1). As the concentration of particles is increased, interactions with neighbouring particles
come into play and the rotational diffusion coefficient is no longer described by the SED
relation (1). For hard spheres, several theoretical studies of the concentration dependence of the
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rotational diffusion coefficient have been presented [3, 11, 15]. Cichocki et al [15] proposed
an expression for the decrease in the rotational diffusion coefficient with increasing volume
fraction φ:

Dr(φ)/D0 = 1 − 0.631φ − 0.726φ2. (2)

For highly charged spheres, in deionized suspensions, Watzlawek and Nägele [12] proposed
the following:

Dr(φ)/D0 = 1 − 1.28φ1.99. (3)

These expressions illustrate that Brownian rotation slows down as the concentration of
particles increases and that this decay is slower for repulsive particles. The colloidal systems
studied in this work consist of charged silica particles with weak magnetic dipolar interactions.
In contrast to experiments with optical measuring techniques, the silica particles are dispersed
in a non-matching solvent and van der Waals interactions should therefore be taken into
account. The overall interaction potential for the particles used in our study may be represented
as:

U(r) = UHS(r) + UvdW(r) + Udip(r) + Uel(r). (4)

The first term is the hard-sphere potential, which prevents particle overlap:

UHS(r) =
{

∞ r < 2R

0 r > 2R,
(5)

UvdW(r) is the attractive van der Waals interaction:

UvdW(r) = − H

12

[
1

(r/2R)2 − 1
+ 1

(r/2R)2
+ 2 ln

(
(r/2R)2 − 1

(r/2R)2

)]
, (6)

where H is the Hamaker constant, R the particle radius and r the centre-to-centre distance
between two spheres.

The interaction between two permanent magnetic point dipoles in arbitrary orientations is
given by:

Udip(r) = μ0μ1μ2

4πr 3
[μ̂1 · μ̂2 − 3(μ̂1 · r̂)(μ̂2 · r̂)], (7)

where μ0 = 4π × 10−7 J A−2 m−1, μ1 and μ2 are the magnetic dipole moments of spheres
1 and 2, μ̂1 and μ̂2 are unit vectors pointing along the directions of the dipoles of particles 1
and 2, and r̂ is a unit vector that points in the direction from the centre of particle 1 to that of
particle 2. When the prefactor μ0μ1μ2/(4πr 3) is small compared to kBT and μ1 = μ2 = μ,
the Boltzmann-weighted average of Udip is given by:

〈Udip(r)〉 = − 2(μ0μ
2)2

3kBT (4π)2r 6
. (8)

The Boltzmann weights exp[−Udip/(kBT )] depend on the orientation according to (7). This is
the classical formula for the pair potential of permanent dipoles [16]. In (8) it is assumed that
only a weak statistical preference exists for the head-to-tail dipole–dipole configuration and
that the interaction can be treated as an isotropic attraction.

The electrostatic term for the interaction between colloidal spheres with a constant surface
charge Ze is:

Uel(r) = (Ze)2

ε0εr

[
exp(κ R)

1 + κ R

]2 exp(−κ R)

r
(9)
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in which the inverse Debye screening length κ for a monovalent salt is given by:

κ =
√

2e2cs

ε0εrkBT
, (10)

where e is the elementary charge, ε0 is the vacuum permittivity, εr is the dielectric constant of
the solvent (for ethanol, εr = 25.3 [17]) and cs is the salt concentration given in number of
cations or anions per volume.

2.2. Complex magnetic susceptibility

To monitor the rotational diffusion in a colloidal system of isotropic particles, these must
be anisotropically labelled. For DDLS, the particles should have an optically anisotropic
crystalline core and the relaxation of the labels is measured by monitoring the evolution of
the depolarized component of the scattered intensity [2]. With techniques such as TPA or
pFRAP, an anisotropic label is created by illuminating fluorescent particles with a polarized
light beam. The decay of the polarized phosphorescence or the fluorescence emission is
ascribed to orientational relaxation of the particles and is measured in time [5, 8].

For complex magnetic susceptibility spectroscopy, an anisotropic probe is present in the
form of a permanent magnetic dipole moment inside the colloids. With the highly sensitive
setup used here, particles with a low magnetic content can be studied at low concentrations.
The magnetic nanoparticles embedded inside the microparticles act as a probe to measure the
diffusive reorientation.

The complex magnetic susceptibility as a function of the radial frequency, ω, is defined as:

χ(ω) = M(ω)

H (ω)
, (11)

where H (ω) is the applied alternating magnetic field and M(ω) is the resulting harmonic
magnetization. For colloidal particles with a permanent magnetic dipole moment, frequency-
dependent measurements of χ at low H (ω) field amplitude yield the rotational diffusion rate
of the particles [14]. The characteristic frequency ωB is obtained from spectra of the real and
imaginary components of the complex susceptibility:

χ ′(ω) = χHF + χLF
ω2

B

ω2
B + ω2

(12)

χ ′′(ω) = χLF
ωBω

ω2
B + ω2

. (13)

Here, χHF is the high-frequency limit and χLF + χHF is the low-frequency limit of the
susceptibility. Whereas χHF is due to nanoparticles whose magnetic moment is not blocked
inside the nanocrystals, χLF scales with the volume fraction, φ, of magnetic silica particles and
the square of their dipole moment μmp:

χLF = Nmp

V

μ0(μmp)
2

3kBT
= φ

VpV

μ0(μmp)
2

3kBT
, (14)

where ω = 2π f is the angular frequency in s−1, f is the cycle frequency in Hz, Nmp is
the number of microparticles per sample volume, V is the volume of the entire sample and
Vp is the volume of a single microparticle. With this technique, the magnetic contribution of
the microparticles, χHF, is separated from other contributions to the susceptibility such as the
field-induced alignment of nanoparticle dipoles that are not blocked or of free nanoparticles,
which are not embedded in microparticles. Néel as well as Brownian relaxation of single
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nanoparticles occur at much higher frequencies than the frequency of Brownian rotation of the
microspheres [14].

The characteristic frequency, ωB, is directly related to the rotational diffusion coefficient
of the particles [18]:

ωB = 2Dr. (15)

Polydispersity is taken into account by fitting the results to a lognormal distribution of the
characteristic frequency:

P(ωB) = 1

σωB

√
2π

exp

[− ln2(ωB/ω0)

2σ 2

]
. (16)

Here, σ 2 is the variance and ω0 is the value of ωB at the maximum of the distribution.
Measurement of the susceptibility in the low-frequency limit on a sample with a known
concentration Nmp V−1 allows calculation of μmp, which means that the average dipole–
dipole interaction potential in the system can be estimated, based on the obtained value of
μmp in (14) [14].

3. Experimental details

Two samples of silica colloids were studied (see table 1), both with embedded cobalt ferrite
magnetic nanoparticles: in one sample the particles have a thin ∼10 nm silica layer around the
magnetic particles and in the other this layer is ∼30 nm. It is expected that a thicker silica layer
will reduce the magnetic interaction between spheres at particle contact. In the limiting case
that the magnetic contact attraction is much weaker than kBT , the magnetic core will only serve
as a probe for measuring the Brownian rotation of the microparticles, whereas for particles with
a thin layer of silica, the dipole–dipole interactions can still influence the rotational diffusion
of the particles.

3.1. Sample preparation

The chemical synthesis of silica colloids with embedded magnetic nanoparticles has been
described in detail in [13]. In brief, cobalt ferrite nanoparticles were prepared in a
coprecipitation step [19] and attached to Stöber silica particles [20] provided with thiol
surface groups. The resulting silica–ferrite composites were coated with an outer silica shell,
and the particle surface was grafted covalently with 3-(trimethoxysilyl)propyl methacrylate
(TPM). The particle dispersions were purified by repeated sedimentation under gravity and re-
dispersion in ethanol. The particle radius, RTEM, and the silica shell thickness, 
RSi, were
obtained from image analysis of electron microscopy pictures (see figure 1). The magnetic
dipole moment of the silica–cobalt ferrite particles can be increased permanently by magnetic
treatment (see table 2) in a strong magnetic field [14]. After susceptibility measurements on
the as-synthesized magnetic silica particles, they were magnetized in a homogeneous field
of 2 T using a Bruker BE 25v electromagnet, after which the susceptibility measurements
were repeated. The magnetized sample was also measured after re-dispersion in ethanol with
10 mM LiNO3.

A small amount of each dispersion with known weight mdisp and volume Vdisp was dried
to obtain the weight of dry particles, mp. Vdisp was obtained by measuring the height of the
dispersion with a cathetometer inside a calibrated tube with a known volume–height relation.
Together with the solvent density, ρs = 0.789 g ml−1 [17], the mass density of the particles,
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Figure 1. Transmission electron microscopy pictures of the studied particles: (a) silica–cobalt
ferrite microspheres (sample A) with a silica shell thickness of ∼10 nm and (b) silica–cobalt ferrite
microspheres (sample B) with a silica shell thickness of ∼30 nm. The scale bars correspond to
500 nm.

Table 1. Characteristics of the magnetic silica dispersions.

Sample code Sample A Sample B

Physical radius, RTEM (nm) 187 ± 34 207 ± 12
Hydrodynamic radius, Rh (nm)a 230 ± 30 286 ± 47
Silica shell thickness, 
RSi (nm) ∼10 ∼30
Particle mass density, ρp (g ml−1) 2.5 1.8

a Calculated from (15) and (1) at the lowest measured concentration.

Table 2. Properties of the magnetic silica dispersions before and after magnetization at 2 T.

Sample A Sample B

Before mag. After mag. Before mag. After mag.

Dipole moment, μ (A m2) 2.5 × 10−17 3.6 × 10−17 2.7 × 10−17 3.1 × 10−17

Max. dipole–dipole int. (7), Umax (kBT ) 0.59 1.2 0.49 0.65
Interaction with 57 A m−1 field, μ0μH (kBT ) 0.44 0.63 0.47 0.54

ρp, was calculated from:

ρp = mp

Vdisp − (
mdisp−m p

ρs
)
. (17)

The sample volume, V , was obtained in the same way as described above and the volume
fraction, φ, of particles in stock dispersions of all samples was calculated:

φ = φmmdisp

V · ρp
, (18)

where φm is the mass fraction of a stock dispersion. The measured value of χHF is directly
proportional to the number of Neél-relaxing particles in the sample. Since the ratio between
the number of microparticles and the number of Neél particles is constant for particles from
the same synthesis batch, χHF can be used as an in situ measure for the volume fraction
(see figure 6). The samples were diluted by stepwise addition of small aliquots of ethanol,
followed by thorough homogenization. Conductivity measurements in the supernatant after
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sedimentation as well as in a semi-dilute dispersion of both samples A and B showed a
salt concentration of approximately 0.2 mM, which corresponds to a Debye length κ−1 ≈
12 nm (10). Salt was added to the magnetized sample A by repeated centrifugation of the
particles and re-dispersion in ethanol with 10 mM LiNO3. This salt concentration decreases
the Debye length to 1.7 nm.

3.2. Complex magnetic susceptibility measurements

At each concentration, a frequency-dependent complex magnetic susceptibility spectrum was
measured. For the fully sedimented samples, the spectra were measured starting from 500 Hz
down to 0.1 Hz. However, for the diluted samples, for which the characteristic frequency is
found at higher frequencies, the spectra were measured from 500 Hz down to 1 Hz. This
was done to shorten the measurement time, thereby limiting the effect of sedimentation on the
spectrum. Control spectra were also measured the other way around, from 1 to 500 Hz, to
verify that the characteristic frequency remained the same, which was the case.

Complex magnetic susceptibility measurements were performed using a setup consisting
of a differential transformer with two concentric multilayered cylindrical copper coils, with
primary layers through which an applied alternating current flows and secondary layers in
which an alternating voltage is induced. Secondary coils were used with a maximized number
of layers beyond which the signal would no longer increase but decrease due to capacitance
and absorption effects. An ac current is applied to the primary coils using a Yokogawa FG120
function generator, and the voltage induced in the secondary coils is measured using a 7265
Perkin–Elmer differential lock-in amplifier in the 0.1 Hz to 1 kHz range. When a sample is
introduced into the coils, the change in the measured alternating voltage is proportional to the
complex susceptibility of the sample. The amplitude of the alternating magnetic field is very
low. The measurements here were performed at 57 A m−1 if not specified otherwise. A more
detailed description of the setup will be presented elsewhere [21]. The coils with the sample
were kept inside an isolated box with a constant temperature, T = 295.5 K.

For the highest volume fractions, the aspect ratio of the sample in the tube was of order 1,
resulting in a demagnetization of ∼10%. The measured absolute values of χ were corrected
for demagnetization effects using [22]:

χreal = χmeas

1 − Nfχmeas
(19)

where Nf is a correction factor obtained from [22] which depends on the aspect ratio of the
cylindrical sample. This correction is only approximate, since the cylindrical sample tube had
a rounded bottom. The measured value of the characteristic frequency is not influenced by
demagnetization effects.

4. Results

A selection of the complex magnetic susceptibility spectra measured on dispersions of magnetic
silica particles is shown in figures 2 and 3. The solid lines in these figures are least-squares fits
of the spectra based on equations (12), (13) and a lognormal distribution of the characteristic
frequency ωB around a value of ω0 with a variance σ 2 (16) [23].

In figure 2, susceptibility spectra are shown for samples A and B at the same concentration
before and after magnetization of the sample. For the particles with a thin silica shell (A),
the increase in dipole moment results in a slight shift of the characteristic frequency to lower
frequencies, ω0, and hence to a lower rotational diffusion coefficient Dr. For the particles with
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Figure 2. Frequency-dependent complex magnetic susceptibility spectra at moderate concentrations
for samples A (φ = 0.12) and B (φ = 0.13) before and after magnetization of the sample at 2 T.
The solid lines are least-squares fits of the spectra. The increase in χLF shows that the permanent
dipole moment of the microparticles has been increased.

a thicker silica shell (B), this effect is not observed, as a consequence of the thicker silica shell
in combination with a smaller increase in dipole moment.

In figure 3 an example is shown of how the susceptibility spectrum changes upon dilution
of a sample. At low concentrations, the spectra show a narrow distribution of ωB and thus a
narrow distribution of Dr (see equation (15)). For the fully sedimented and partially crystalline
samples, this distribution is broadened and the mean characteristic frequency and rotational
diffusion coefficient are significantly lower. The broadening of the spectra at higher volume
fractions is probably due to a polydispersity effect that becomes more important as the particles
come closer together. In an ordered structure of particles, a small particle will be more free to
rotate than its larger neighbours. This gives, averaged over a whole sample volume, a larger
distribution of ω0.

The rotational diffusion coefficients obtained from the susceptibility spectra are displayed
in figure 4 as a function of the volume fraction. The corresponding widths of the distributions
of the characteristic frequency can be found in figure 5. In the most dilute regime of sample A,
the characteristic frequency is ω0/(2π) ≈ 3.7 Hz before and after magnetization. This value
decreases rapidly up to φ ∼ 0.01 for the magnetized sample.

At concentrations φ > 0.01, the decrease in ω0 as a function of φ is slower and parallel
for sample A before and after magnetization. Finally, at the highest concentrations, where the
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Figure 3. Frequency-dependent complex magnetic susceptibility spectra and photographs of the
dispersion of sample A from high dilution (φ = 0.003) to partially crystalline sediment (φ = 0.26).
For the sediment, the characteristic frequency is shifted to a lower value and the distribution of ωB

is broadened compared to the diluted samples.

particles are fully sedimented and form partially a colloidal crystal and partially a colloidal
glass, there is again a drop in ω0(φ), accompanied by a steep increase in the distribution width
of ωB as the particles become restricted in their motion. A similar result is obtained when
a colloidal glass phase is created by centrifugation of a dispersion at 20g. Since the only
difference between these two measurement series is the increase in the microparticle dipole
moment, obtained by treatment in an external magnetic field, the difference in the two ω0(φ)-
profiles must be explained in terms of increasing dipolar attractions, as will be discussed in
section 5. Figure 4 also shows the data obtained for the magnetized sample A after the addition
of 10 mM LiNO3, which at low concentration leads to faster rotation than without added salt.

Figure 6 shows how the low-frequency limit of the susceptibility spectrum, χLF, increases
linearly with the susceptibility in the high-frequency limit, χHF. χLF is proportional to the
number concentration of single microparticles (14) and χHF is proportional to the number
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Figure 4. The characteristic frequency, ω0/(2π), as a function of volume fraction for samples A
and B: left, linear scale; right, logarithmic scale. The arrow indicates a point measured on a colloidal
glass of the particles in sample A before magnetization, obtained by sedimentation in a centrifuge
at 20g. The solid curves are a guide to the eye.

Figure 5. The distribution width, σ , of the characteristic frequency as a function of volume
fraction (16). The solid curves are a guide to the eye.

of Néel-relaxing particles. The deviation from linearity at the two highest concentrations
indicates that a fraction of the microspheres is no longer as free to rotate and therefore no
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Figure 6. The low-frequency limit of the susceptibility spectrum, χLF, as a function of the
susceptibility in the high-frequency limit, χHF, which is proportional to φ. The deviation from
linearity at the two highest concentrations indicates that a fraction of the microspheres is no longer
free to rotate and therefore does not contribute to χLF. The solid lines are a guide to the eye, and
the arrow indicates the point measured on the particles from sample A in a glassy state obtained by
centrifugation at 20g.

Figure 7. Frequency-dependent complex magnetic susceptibility spectra for the sedimented
particles in sample B and the same sample as a dry powder after evaporation of the solvent. In
the sediment of sample B, a fraction of the particles is restricted from moving, as was shown in
figure 6. However, it is clear that the sediment still has a much higher susceptibility than when the
particles are not moving at all, as in the dry powder. The microparticles in the powder no longer
exhibit Brownian motion and, as a result, only the Néel-relaxing nanoparticles are detected, with
a much weaker frequency dependence, since the characteristic frequency of the Néel relaxation is
much higher.

longer contributes to χLF. In figure 7, a susceptibility spectrum is shown before and after a full
removal of solvent by evaporation. The particles in the dry powder are not moving and, as a
result, only the χHF-component of the complex magnetic susceptibility remains. This confirms
that the characteristic frequencies displayed in the previous figures correspond to rotation of
the colloidal particles.
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5. Discussion

5.1. Magnetic properties and magnetic interactions

The rotational diffusion of the magnetic silica spheres is clearly affected by their interaction
potential: exposure of the particles to a saturating magnetic field increases their magnetic
moment and decreases the characteristic frequency, ω0 (see figure 4). Two questions arise
concerning the magnetic dipole interaction between the type of composite particles used in
our experiments: (a) is the interaction sufficiently weak that it can be treated as an effectively
isotropic interaction and (b) what is the influence of the fact that the particles are not point
dipoles but instead have a shell of magnetic nanoparticles?

5.1.1. Attractive magnetic dipole interactions. The interaction between two permanent
magnetic point dipoles in arbitrary orientations is given by (7). When the prefactor
μ0μ

2/(4πr 3) exceeds kBT , the head-to-tail configuration starts to dominate, especially at high
concentrations, and experiment and theory indicate the formation of dipolar chains consisting
of two or more particles [24–26].

The maximum dipolar interaction energy is achieved when two particles are in contact
and when the particle dipole moments are aligned in the head-to-tail configuration: Umax =
μ0μ

2/(2πd3) (7). For our particles, Umax lies clearly below 2kBT , even after treatment in
a saturating magnetic field (table 2), indicating that long-lived dipolar structures are absent.
Furthermore, from the characteristic frequencies of the order of 4 Hz, the formation of dipolar
structures that exist longer than about 40 ms can be excluded, based on the experimental
susceptibility spectra. The smallest dipolar structures would be doublets, whose rotational
diffusion can be approximated by that of a sphero-cylinder of aspect ratio L/d = 2, leading
to a characteristic frequency lower than that of a single sphere by a factor of five [27].
In figure 8, calculated complex magnetic susceptibility spectra are shown for a simple
shift of the characteristic frequency without doublet formation (figure 8(A)) and for the
appearance of doublets at the cost of single particles (figure 8(B)). These can be compared
to the experimentally obtained spectra, of which one example is given in figure 8(C). In the
experiments, the characteristic frequency remains around the value expected for single sphere
rotation (equations (1) and (15)) and the shifts in ωB are simple shifts similar to what is shown
in figure 8(A). We conclude that long-lived dipolar structures, i.e. structures that would rotate
as new entities rather than as separate spheres, are absent in our colloidal dispersions. It
therefore seems reasonable to assume that the magnetic interaction can be treated as an isotropic
attraction whose distance dependence is given by (8).

5.1.2. Effect of position of the magnetic nanoparticles inside the microspheres. The second
issue affecting magnetic dipole attraction between the silica spheres is that they are not point
dipoles but have a shell of magnetic nanoparticles. The magnetic dipole moment of a silica
particle is given by the vector sum of the dipoles in the magnetic shell [14]. In the case of two
silica dipolar particles with all nanoparticle dipoles parallel to each other in the head-to-tail
configuration, it can be seen qualitatively why the attraction is stronger when the nanoparticles
are in a shell (figure 9(A)) rather than at the centre of the particle (figure 9(B)). Compared
to the case where the nanodipoles are at the centre of the microparticles, the weak attractions
between far-removed dipoles are more than compensated by the strong interactions between
nearby nanoparticle dipoles, due to the r−3-dependence of the interaction between dipoles (7).

Numerical calculations were performed of the dipolar interaction between composite
spheres, as in figure 9(A), with an outer diameter d1 = 375 nm, a microparticle dipole moment
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Figure 8. The effect of (A) a simple shift of the characteristic frequency of a susceptibility spectrum
of single particles of Rh = 230 nm without formation of doublets, (B) the effect on the susceptibility
spectrum upon formation of doublets at the expense of singlets and (C) experimentally obtained
spectra for dilute sample A before magnetic treatment and at φ = 0.15 for the same particles
after magnetic treatment. In the experimental curves, the shift to lower frequencies at the higher
concentration is not large enough to correspond to doublets or larger structures.

of 4 × 10−17 A m2 and 342 parallel magnetic nanoparticle dipoles evenly distributed on an
inner shell of diameter d2 = 355 nm. This roughly corresponds to the particle in sample A,
where the outer silica shell is only ∼10 nm. The weighted average interaction 〈Udip〉 was
calculated with Boltzmann weights exp[−Udip/(kBT )] by adding the contributions of all pair
interactions between nanoparticle dipoles, taking into account their orientations and spatial
positions. At each distance between the microparticles, the weighted average interaction was
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Figure 9. Left: schematic illustration to compare the attraction between composite colloidal
particles of diameter d1 with magnetic nanoparticles embedded (A) in a shell of diameter d2

and (B) at the centre. Right: numerically calculated dipolar interaction potentials 〈Udip〉/kB T as
a function of centre-to-centre distance between composite spheres as sketched in (A) and (B). The
total diameter was chosen as d1 = 375 nm and the diameter of the shell of magnetic nanoparticles
with 342 evenly distributed parallel magnetic dipoles adding up to a microparticle magnetic moment
of 4 × 10−17 A m2 was chosen as d2 = 355 nm and d2 = 0, respectively. At a particle separation
of >10 nm, the interaction potential for the silica particles with a shell of magnetic nanoparticles
closely approximates the interaction potential for point dipoles.

calculated by integration across all possible orientations of both microparticles. The result is
shown in figure 9(C). A control of the calculation is that, for d2 = 0 (all nanoparticles at the
centre, as in figure 9(B)), the numerical calculation agrees with (8) for point dipoles. A control
of the sampling of configurations during numerical integration over different orientations is
that the unweighted average interaction was found to be zero within digital accuracy. For
a separation of the magnetic shells of r = 10 nm, the result for d2 = 355 nm is almost
indistinguishable from the calculation for d2 = 0. Since the thickness of the outer silica layer
of the studied particles already exceeds 10 nm, we can conclude that it is a good assumption to
treat the microparticle dipoles as point dipoles.

5.2. Influence of dipolar interactions on rotational diffusion

A clear result of our experiments is that the characteristic rotational frequency depends on the
dipolar interactions between the particles (figure 4). When the permanent dipole moment of the
particles is increased by magnetic treatment, the dipole–dipole interactions are enhanced and
particle rotation slows down. However, two remarkable observations deserve discussion: the
rotational retardation after dipole moment enhancement is only a weak function of the volume
fraction above φ = 0.01, and salt addition does not decelerate rotation but accelerates it.

Before increasing the dipole moment of the microparticles (see figure 10, curve a),
rotational diffusion is already somewhat slower than for hard spheres (see figure 10, curve b).
If the increased dipole moments would only lead to further attraction between the particles,
the rotational diffusion is expected to decrease more and more rapidly as a function of the
volume fraction (curve c in figure 10). What is observed, however, is a fast initial retardation
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Figure 10. Comparison of experimental results of magnetic silica particles in sample A, before (a)
and after (d) increasing the dipole moment, with calculated values for hard spheres (b, equation (2))
and charged spheres (e, equation (3)). Curve c is a hypothetical curve for the expected ω0(φ)-profile
due to dipole–dipole interactions only.

below a volume fraction of φ = 0.01, above which the rotation rate is no longer a strong
function of volume fraction (curve d in figure 10). This result cannot be accounted for only
on the basis of increased hydrodynamic interaction due to attraction-induced shortening of
interparticle distances. One tempting explanation would be that, above φ = 0.01, the decrease
in the time-averaged distance between neighbouring particles at increasing volume fraction is
counteracted by electrostatic repulsion. This would set a minimum distance between interacting
particles and thus limit retardation of rotation due to dipolar attraction. However, at a volume
fraction of φ = 0.01, the average centre-to-centre interparticle distance is still of the order of
0.01−1/3 ∼ 5 particle diameters, whereas the Debye length in our systems without added salt
is only ∼3% of one particle diameter (see section 3.1).

The length scales of the interactions are illustrated in figure 11, calculated on the basis
of equations (4), (6), (8) and (9), using a particle radius of 187 nm and the measured ion
concentrations in our system before and after salt addition. Typical values of the charge per
surface area of TPM-coated Stöber-silica spheres in ethanol [28] were used and a Hamaker
constant of silica in ethanol was estimated from an approximate expression given in [29].
Figure 11 illustrates that it is difficult to ascribe the relatively abrupt change in rotational
dynamics around φ = 0.01 to electrostatic repulsion, when the average interparticle distance
is still far below values where the electrostatic double layers of neighbouring particles are
overlapping. Moreover, if electrostatic repulsion were to favour rapid rotation, salt addition
should diminish that effect and lead to slower rotation due to the much increased attraction
between the particles. Our experiments contradict this expectation: the addition of salt not only
fails to slow down the rotation of particles, but even slightly enhances it.

It is concluded that, at concentrations above φ = 0.01, an effect is present that accelerates
particle rotation at increasing colloidal concentration and that counteracts the retardation that
is due to increasing hydrodynamic and dipolar interaction. On a microscopic level, there is
apparently a mechanism by which the rotation of one particle facilitates that of its neighbours as
the particles come closer together. To understand this, we propose that not only dipole–dipole
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Figure 11. Calculated overall interaction potentials, U/kBT , as a function of the interparticle
centre-to-centre distance, r , based on equations (4), (6), (8) and (9) for particles with Z = 1500 [28],
κ−1 = 12 nm, H ≈ 3 × 10−21 J and R = 187 nm: 1, electrostatic repulsion; 2, electrostatic
repulsion and van der Waals attractions; 3 and 4, electrostatic repulsion and van der Waals attractions
in combination with dipole–dipole interaction for μ = 2.5×10−17 A m2 and μ = 3.6×10−17 A m2.
Curve 5 is the same as in 4, but with a Debye length of 2 nm, illustrating the effect of dispersing the
particles in a 10 mM monovalent salt solution.

interactions should be taken into account, but also that the interaction of the particle dipoles
with the applied alternating magnetic field that probes the rotational motion of the particles.

Figure 12 sketches the time dependence of the orientation of the external magnetic field and
of the dipolar particles. The applied field is up or down and its magnitude varies sinusoidally.
The equipment measures the resulting magnetization of the sample, which depends on the
orientations of the dipolar particles. Even when the strength of the applied field passes a
maximum, particle alignment is only partial, since a weak magnetic field amplitude is used.
When the field passes zero, the dipoles start to rotate towards the steady-state orientation
distribution that corresponds to the instantaneous applied field. In table 2, values are given
for the maximum dipolar interaction between the particles, Umax, and the interaction energy,
μμ0 H , for the dipoles with the applied field. For the particles that are studied, the interaction
with the field is on the order of μμ0 H = 0.4–0.6kBT . Interaction with the field is only
negligible when μμ0 H 	 kBT , which is not the case. The alignment of the particle dipoles
with the applied field can therefore not be regarded as purely diffusive.

The cooperative alignment of dipolar particles above a threshold concentration could be
explained if doublets were formed. The interaction with the external field would be twice as
strong as for single particles. This would explain why the increase in particle concentration
(decrease in average distance between the particles) and addition of salt (decrease in distance
of nearest approach) both lead to an acceleration of the particle rotation. However, as discussed
in the previous section, the dipole–dipole interactions are not strong enough to form long-lived
doublets or larger anisotropic structures. Nevertheless, the maximum dipole–dipole interaction
for the particles in sample A is far from negligible: ∼0.6 kBT before and ∼1.2 kBT after
magnetic treatment at 2 T. Although not strong enough to form long-lived doublets, these
particles could form short-lived doublets, as they come into contact with each other while
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Figure 12. Illustration of the time dependence of the orientation of the external magnetic field
and of the dipolar particles during complex magnetic susceptibility measurements. The equipment
measures the resulting magnetization of the sample, which depends on the orientations of the dipolar
particles. Even when the strength of the applied field passes a maximum, particle alignment is only
partial, since a weak magnetic field amplitude is used.

diffusing around. The life-time of such a short-lived doublet can be roughly estimated based
on the time that it takes for the particles to diffuse approximately one particle diameter apart
after particle encounter. Particles with an attractive interaction potential of ∼1 kBT then have
a doublet life-time on the order of 10 ms. This is long enough to assist alignment with the
field during half a period of the sinusoidally alternating field, leading to an enhanced particle
rotation rate.

At the lowest concentrations, particle contact and the formation of short-lived doublets is
much less frequent than at higher concentrations. The long-ranged dipole–dipole interactions
can slow down the rotational diffusion and shorten the average distance between the particles,
thereby enhancing the hydrodynamic interactions in the system.

Our explanation implies that particle rotation is no longer purely diffusive in our systems
above φ = 0.01, but that it is assisted by the external field and by dipole–dipole interactions.
Below φ = 0.01, the concentration is low enough for the rotation of particles to be purely
diffusive. In future applications, when the objective is to measure the rotational diffusion rate at
high concentrations of the magnetically labelled particles (φ > 0.01), the magnetic interaction
should remain weaker than in system A after magnetic treatment. This suggests that the head-
to-tail contact interaction energy should be kept well below kBT to use the particles as probes
of rotational diffusion at high concentrations. To realize this, lower amounts of or less strongly
magnetic material should be used and the magnetic nanoparticles should be embedded far
enough below the surface of the microparticles to avoid enhanced dipolar interaction (figure 9).
Moreover, the magnitude of the alternating magnetic field could be decreased even further as
long as the signal-to-noise ratio remains sufficiently high.
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6. Conclusions

We have demonstrated that frequency-dependent complex magnetic susceptibility measure-
ments can be employed as a new experimental method to study rotational diffusion in colloidal
systems, provided that the particles are labelled with thermally blocked magnetic dipoles and
that the particle dipole moment remains small (head-to-tail contact interaction 	kBT ). This
method has the advantage that it can be applied to colloidal particles of various shapes and in
the size range of 5–500 nm in radius, without refractive index matching. Even strongly light
scattering or absorbing materials can be studied. The technique allows direct measurements of
the rotational diffusion coefficient and the width of its distribution over the full range of vol-
ume fractions without using host-tracer systems. Moreover, colloidal particles with attractive
dipolar and/or van der Waals interactions can be studied, since this magnetic technique is not
sensitive to optical scattering or absorption. This opens up possibilities to examine the rota-
tional diffusion of a variety of complex colloidal systems such as anisotropic and/or dipolar
particles as well as particles in various solvents or confined geometries.

Using this technique we have been able to perform an experimental study of the
concentration dependence of the Brownian rotation for charged colloidal silica spheres with
an intrinsic, permanent dipole moment. The results show that dipolar interactions between the
particles lead to a faster initial decay of the rotational diffusion coefficient as a function of
the volume fraction than for hard spheres or charged spheres. At volume fractions φ > 0.01,
magnetic coupling between the dipole moments accelerated particle rotation in the alternating
external field, and rotation was no longer purely diffusive.

We have also shown that a slightly thicker outer shell partially screens the magnetic
interactions, which means that, by growing an outer non-magnetic layer, the particles eventually
behave as charged spheres and the magnetic particles are only acting as a probe for the rotational
diffusion measurements.
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